Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+.

نویسندگان

  • Robyn L O'Kane
  • Juan R Viña
  • Ian Simpson
  • Rosa Zaragozá
  • Ashwini Mokashi
  • Richard A Hawkins
چکیده

Cationic amino acid (CAA) transport is brought about by two families of proteins that are found in various tissues: Cat (CAA transporter), referred to as system y+, and Bat [broad-scope amino acid (AA) transporter], which comprises systems b0,+, B0,+, and y+L. CAA traverse the blood-brain barrier (BBB), but experiments done in vivo have only been able to examine the BBB from the luminal (blood-facing) side. In the present study, plasma membranes isolated from bovine brain microvessels were used to identify and characterize the CAA transporter(s) on both sides of the BBB. From these studies, it was concluded that system y+ was the only transporter present, with a prevalence of activity on the abluminal membrane. System y+ was voltage dependent and had a Km of 470 +/- 106 microM (SE) for lysine, a Ki of 34 microM for arginine, and a Ki of 290 microM for ornithine. In the presence of Na+, system y+ was inhibited by several essential neutral AAs. The Ki values were 3-10 times the plasma concentrations, suggesting that system y+ was not as important a point of access for these AAs as system L1. Several small nonessential AAs (serine, glutamine, alanine,and glycine) inhibited system y+ with Ki values similar to their plasma concentrations, suggesting that system y+ may account for the permeability of the BBB to these AAs. System y+ may be important in the provision of arginine for NO synthesis. Real-time PCR and Western blotting techniques established the presence of the three known nitric oxide synthases in cerebral endothelial cells: NOS-1 (neuronal), NOS-2 (inducible), and NOS-3 (endothelial). These results confirm that system y+ is the only CAA transporter in the BBB and suggest that NO can be produced in brain endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine.

The cationic amino acid arginine, due to its positive charge, is usually accumulated in the cytosol. Nevertheless, arginine has to be released by a number of cell types, e.g. kidney cells, which supply other organs with this amino acid, or the endothelial cells of the blood-brain barrier which release arginine into the brain. Arginine release in mammalian cells can be mediated by two different ...

متن کامل

The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier.

L-DOPA is transported across the blood-brain barrier (BBB) by an amino acid transporter, system L. Recently, it has been demonstrated that system L consists of two subunits, 4F2hc and either LAT1 or LAT2. 4F2hc/LAT1 and 4F2hc/LAT2 show different transport characteristics, while their distribution in the brain has not been determined. To clarify whether 4F2hc/LAT1 participates in L-DOPA transpor...

متن کامل

Glutamine uptake at the blood-brain barrier is mediated by N-system transport.

The mechanism of unidirectional transport of glutamine from blood to brain in pentobarbital-anesthetized rats was examined using in situ perfusion. Amino acid uptake into brain across the blood-brain barrier (BBB) is classically thought to be via the Na-independent large neutral (L-system), acidic and basic amino acid transporters. In the presence of physiological concentrations of amino acids ...

متن کامل

Inhibition of neutral amino acid transport across the human blood-brain barrier by phenylalanine.

The delivery of large neutral amino acids (LNAAs) to brain across the blood-brain barrier (BBB) is mediated by the L-type neutral amino acid transporter present in the membranes of the brain capillary endothelial cell. In experimental animals, the L-system transporter is saturated under normal conditions, and therefore an elevation in the plasma concentration of one LNAA will reduce brain uptak...

متن کامل

Glutamate and Glutamine in the Brain Transport of Glutamate and Other Amino Acids at the Blood-Brain Barrier

In most regions of the brain, the uptake of glutamate and other anionic excitatory amino acids from the circulation is limited by the blood-brain barrier (BBB). In most animals, the BBB is formed by the brain vascular endothelium, which contains cells that are joined by multiple bands of tight junctions. These junctions effectively close off diffusion through intercellular pores; as a result, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 291 2  شماره 

صفحات  -

تاریخ انتشار 2006